Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214701

ABSTRACT

No preclinical experimental approach enables the study of voluntary oral consumption of high-concentration Δ9-tetrahydrocannabinol (THC) and its intoxicating effects, mainly owing to the aversive response of rodents to THC that limits intake. Here, we developed a palatable THC formulation and an optimized access paradigm in mice to drive voluntary consumption. THC was formulated in chocolate gelatin (THC-E-gel). Adult male and female mice were allowed ad libitum access for 1 and 2 hr. Cannabimimetic responses (hypolocomotion, analgesia, and hypothermia) were measured following access. Levels of THC and its metabolites were measured in blood and brain tissue. Acute acoustic startle responses were measured to investigate THC-induced psychotomimetic behavior. When allowed access for 2 hr to THC-E-gel on the second day of a 3-day exposure paradigm, adult mice consumed up to ≈30 mg/kg over 2 hr, which resulted in robust cannabimimetic behavioral responses (hypolocomotion, analgesia, and hypothermia). Consumption of the same gelatin decreased on the following third day of exposure. Pharmacokinetic analysis shows that THC-E-gel consumption led to parallel accumulation of THC and its psychoactive metabolite, 11-OH-THC, in the brain, a profile that contrasts with the known rapid decline in brain 11-OH-THC levels following THC intraperitoneal (i.p.) injections. THC-E-gel consumption increased the acoustic startle response in males but not in females, demonstrating a sex-dependent effect of consumption. Thus, while voluntary consumption of THC-E-gel triggered equivalent cannabimimetic responses in male and female mice, it potentiated acoustic startle responses preferentially in males. We built a dose-prediction model that included cannabimimetic behavioral responses elicited by i.p. versus THC-E-gel to test the accuracy and generalizability of this experimental approach and found that it closely predicted the measured acoustic startle results in males and females. In summary, THC-E-gel offers a robust preclinical experimental approach to study cannabimimetic responses triggered by voluntary consumption in mice, including sex-dependent psychotomimetic responses.


Subject(s)
Dronabinol , Hypothermia , Mice , Male , Female , Animals , Reflex, Startle , Gelatin/pharmacology , Behavior, Animal
2.
Cell Metab ; 35(7): 1227-1241.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37267956

ABSTRACT

One of cannabis' most iconic effects is the stimulation of hedonic high-calorie eating-the "munchies"-yet habitual cannabis users are, on average, leaner than non-users. We asked whether this phenotype might result from lasting changes in energy balance established during adolescence, when use of the drug often begins. We found that daily low-dose administration of cannabis' intoxicating constituent, Δ9-tetrahydrocannabinol (THC), to adolescent male mice causes an adult metabolic phenotype characterized by reduced fat mass, increased lean mass and utilization of fat as fuel, partial resistance to diet-induced obesity and dyslipidemia, enhanced thermogenesis, and impaired cold- and ß-adrenergic receptor-stimulated lipolysis. Further analyses revealed that this phenotype is associated with molecular anomalies in the adipose organ, including ectopic overexpression of muscle-associated proteins and heightened anabolic processing. Thus, adolescent exposure to THC may promote an enduring "pseudo-lean" state that superficially resembles healthy leanness but might in fact be rooted in adipose organ dysfunction.


Subject(s)
Dronabinol , Obesity , Mice , Male , Animals , Dronabinol/pharmacology , Adiposity , Energy Intake , Homeostasis
3.
Pharmacol Res ; 187: 106600, 2023 01.
Article in English | MEDLINE | ID: mdl-36481259

ABSTRACT

Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were ∼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (∼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.


Subject(s)
Cannabis , Dronabinol , Adolescent , Humans , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Mass Spectrometry , Aerosols/metabolism
4.
Article in English | MEDLINE | ID: mdl-36367975

ABSTRACT

Introduction: Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are major chemical constituents of cannabis, which may interact either directly or indirectly with the endocannabinoid and endocannabinoid-like ("paracannabinoid") systems, two lipid-based signaling complexes that play important roles in physiology. Legislative changes emphasize the need to understand how THC and CBD might impact endocannabinoid and paracannabinoid signaling, and to develop analytical approaches to study such impact. In this study, we describe a sensitive and accurate method for the simultaneous quantification of THC, its main oxidative metabolites [11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)], CBD, and a representative set of endocannabinoid [anandamide and 2-arachidonoyl-sn-glycerol (2-AG)] and paracannabinoid [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] compounds. Analyte separation relies on the temperature-dependent shape selectivity properties of polymerically bonded C18 stationary phases. Materials and Methods: Analytes are extracted from tissues using acetonitrile precipitation followed by phospholipid removal. The ultrahigh-performance liquid chromatography/tandem mass spectrometry protocol utilizes a commercially available C18 polymeric-bonded phase column and a simple gradient elution system. Results: Ten-point calibration curves show excellent linearity (R2>0.99) over a wide range of analyte concentrations (0.02-500 ng/mL). Lowest limits of quantification are 0.05 ng/mL for anandamide, 0.1 ng/mL for 11-OH-THC and OEA, 0.2 ng/mL for THC and CBD, 0.5 ng/mL for 11-COOH-THC, 1.0 ng/mL for 2-AG, and 2.0 ng/mL for PEA. The lowest limits of detection are 0.02 ng/mL for anandamide, 0.05 ng/mL for 11-OH-THC and OEA, 0.1 ng/mL for THC and CBD, 0.2 ng/mL for 11-COOH-THC, 0.5 ng/mL for 2-AG, and 1.0 ng/mL for PEA. Conclusions: An application of the method is presented, which showed that phytocannabinoid administration elevates endocannabinoid levels in plasma and brain of adolescent male and female mice.

5.
Pharmacol Res ; 182: 106338, 2022 08.
Article in English | MEDLINE | ID: mdl-35781057

ABSTRACT

The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.


Subject(s)
Neuroblastoma , Parkinsonian Disorders , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Amidohydrolases , Animals , Disease Models, Animal , Dopamine , Dopaminergic Neurons/metabolism , Enzyme Inhibitors/pharmacology , Humans , Mice , Nerve Degeneration/drug therapy , Neuroblastoma/drug therapy , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy
6.
Biol Psychiatry ; 92(11): 845-860, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35750512

ABSTRACT

BACKGROUND: During adolescence, microglia are actively involved in neocortical maturation while concomitantly undergoing profound phenotypic changes. Because the teenage years are also a time of experimentation with cannabis, we evaluated whether adolescent exposure to the drug's psychotropic constituent, Δ9-tetrahydrocannabinol (THC), might persistently alter microglia function. METHODS: We administered THC (5 mg/kg, intraperitoneal) once daily to male and female mice from postnatal day (PND) 30 to PND44 and examined the transcriptome of purified microglia in adult animals (PND70 and PND120) under baseline conditions or following either of two interventions known to recruit microglia: lipopolysaccharide injection and repeated social defeat. We used high-dimensional mass cytometry by time-of-flight to map brain immune cell populations after lipopolysaccharide challenge. RESULTS: Adolescent THC exposure produced in mice of both sexes a state of microglial dyshomeostasis that persisted until young adulthood (PND70) but receded with further aging (PND120). Key features of this state included broad alterations in genes involved in microglia homeostasis and innate immunity along with marked impairments in the responses to lipopolysaccharide- and repeated social defeat-induced psychosocial stress. The endocannabinoid system was also dysfunctional. The effects of THC were prevented by coadministration of either a global CB1 receptor inverse agonist or a peripheral CB1 neutral antagonist and were not replicated when THC was administered in young adulthood (PND70-84). CONCLUSIONS: Daily low-intensity CB1 receptor activation by THC during adolescence may disable critical functions served by microglia until young adulthood with potentially wide-ranging consequences for brain and mental health.


Subject(s)
Dronabinol , Microglia , Animals , Female , Male , Mice , Dronabinol/pharmacology , Lipopolysaccharides/pharmacology , Gonadal Steroid Hormones , Stress, Psychological , Homeostasis
7.
Pharmacology ; 107(7-8): 423-432, 2022.
Article in English | MEDLINE | ID: mdl-35691287

ABSTRACT

INTRODUCTION: Previous work suggests the existence of a paracrine signaling mechanism in which histamine released from visceral mast cells into the portal circulation contributes to fasting-induced ketogenesis by stimulating biosynthesis of the endogenous high-affinity PPAR-α agonist oleoylethanolamide (OEA). METHODS: Male C57Bl/6J mice were rendered obese by exposure to a high-fat diet (HFD; 60% fat). We measured histamine, OEA, and other fatty-acid ethanolamides by liquid-chromatography/mass spectrometry, gene transcription by RT-PCR, protein expression by ELISA, neutral lipid accumulation in the liver using Red Oil O and BODIPY staining, and collagen levels using picrosirius red staining. RESULTS: Long-term exposure to HFD suppressed both fasting-induced histamine release into portal blood and histamine-dependent OEA production in the liver. Additionally, subchronic OEA administration reduced lipid accumulation, inflammatory responses, and fibrosis in the liver of HFD-exposed mice. DISCUSSION: The results suggest that disruption of histamine-dependent OEA signaling in the liver might contribute to pathology in obesity-associated liver steatosis.


Subject(s)
Histamine , PPAR alpha , Animals , Diet, High-Fat/adverse effects , Endocannabinoids/metabolism , Histamine/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Oleic Acids , PPAR alpha/genetics
8.
Cannabis Cannabinoid Res ; 7(6): 814-826, 2022 12.
Article in English | MEDLINE | ID: mdl-35353551

ABSTRACT

Introduction: Studies in rodent models have shown that adolescent exposure to Δ9-THC, the psychotropic constituent of cannabis, produces long-lasting alterations in brain function and behavior. However, our understanding of how age and sex might influence the distribution and metabolism of THC in laboratory rodents is still incomplete. In the present report, we provide a comparative analysis of the pharmacokinetic (PK) properties of THC in adolescent and adult rats of both sexes, and outline several dissimilarities across these groups. Materials and Methods: A single (acute) or 2-week daily (subchronic) administration of THC (0.5 or 5 mg/kg, acute; 5 mg/kg, subchronic; intraperitoneal) was given to adolescent (33-day-old, acute; 30-44-day-old, subchronic) and young adult (70-day-old, acute only) male and female rats. THC and its first-pass metabolites-11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma and brain tissue using a selective isotope-dilution liquid chromatography/tandem mass spectrometry assay. Changes in body temperature were measured using abdominally implanted microchips. Biotransformation of THC to its metabolites using freshly prepared liver microsomes was assessed. Results: At the acute 5 mg/kg dose, maximal plasma concentrations of THC were twice as high in adult than in adolescent rats. Conversely, in adults, brain concentrations and brain-to-plasma ratios for THC were substantially lower (25-50%) than those measured in adolescents. Similarly, plasma and brain concentrations of THC metabolites were higher in adolescent male rats compared with adult males. Interestingly, plasma and brain concentrations of the psychoactive THC metabolite 11-OH-THC were twofold to sevenfold higher in female animals of both ages compared with males. Moreover, liver microsomes from adolescent males and adolescent and adult females converted THC to 11-OH-THC twice as fast as adult male microsomes. A dose-dependent hypothermic response to THC was observed in females with 0.5 and 5 mg/kg THC, whereas only the highest dose elicited a response in males. Finally, subchronic administration of THC during adolescence did not significantly affect the drug's PK profile. Conclusions: The results reveal the existence of multiple age and sex differences in the distribution and metabolism of THC in rats, which might influence the pharmacological response to the drug.


Subject(s)
Dronabinol , Microsomes , Female , Male , Animals , Rats
9.
Neuropsychopharmacology ; 46(5): 959-969, 2021 04.
Article in English | MEDLINE | ID: mdl-32927465

ABSTRACT

Δ9-tetrahydrocannabinol (THC) is the intoxicating constituent of cannabis and is responsible for the drug's reinforcing effects. Retrospective human studies suggest that cannabis use during adolescence is linked to long-term negative psychological outcomes, but in such studies it is difficult to distinguish the effects of THC from those of coexisting factors. Therefore, translationally relevant animal models are required to properly investigate THC effects in adolescents. However, though the relevance of these studies depends upon human-relevant dosing, surprisingly little is known about THC pharmacology and its effects on behavior and brain activity in adolescent rodents-especially in females. Here, we conducted a systematic investigation of THC pharmacokinetics, metabolism and distribution in blood and brain, and of THC effects upon behavior and neural activity in adolescent Long Evans rats of both sexes. We administered THC during an early-middle adolescent window (postnatal days 27-45) in which the brain may be particularly sensitive to developmental perturbation by THC. We determined the pharmacokinetic profile of THC and its main first-pass metabolites (11-hydroxy-THC and 11-nor-9-carboxy-THC) in blood and brain following acute injection (0.5 or 5 mg/kg, intraperitoneal). We also evaluated THC effects on behavioral assays of anxiety, locomotion, and place conditioning, as well as c-Fos expression in 14 brain regions. Confirming previous work, we find marked sex differences in THC metabolism, including a female-specific elevation in the bioactive metabolite 11-hydroxy-THC. Furthermore, we find dose-dependent and sex-dependent effects on behavior, neural activity, and functional connectivity across multiple nodes of brain stress and reward networks. Our findings are relevant for interpreting results of rat adolescent THC exposure studies, and may lend new insights into how THC impacts the brain in a sex-dependent manner.


Subject(s)
Dronabinol , Hallucinogens , Animals , Brain , Dronabinol/pharmacology , Female , Male , Rats , Rats, Long-Evans , Retrospective Studies
10.
J Pharmacol Exp Ther ; 374(1): 151-160, 2020 07.
Article in English | MEDLINE | ID: mdl-32345621

ABSTRACT

We investigated the pharmacokinetic properties of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive constituent of cannabis, in adolescent and adult male mice. The drug was administered at logarithmically ascending doses (0.5, 1.6, and 5 mg/kg, i.p.) to pubertal adolescent (37-day-old) and adult (70-day-old) mice. Δ9-THC and its first-pass metabolites-11-hydroxy-Δ9-THC and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma, brain, and white adipose tissue (WAT) using a validated isotope-dilution liquid chromatography/tandem mass spectrometry assay. Δ9-THC (5 mg/kg) reached 50% higher circulating concentration in adolescent mice than in adult mice. A similar age-dependent difference was observed in WAT. Conversely, 40%-60% lower brain concentrations and brain-to-plasma ratios for Δ9-THC and 50%-70% higher brain concentrations for Δ9-THC metabolites were measured in adolescent animals relative to adult animals. Liver microsomes from adolescent mice converted Δ9-THC into 11-COOH-THC twice as fast as adult microsomes. Moreover, the brains of adolescent mice contained higher mRNA levels of the multidrug transporter breast cancer resistance protein, which may extrude Δ9-THC from the brain, and higher mRNA levels of claudin-5, a protein that contributes to blood-brain barrier integrity. Finally, administration of Δ9-THC (5 mg/kg) reduced spontaneous locomotor activity in adult, but not adolescent, animals. The results reveal the existence of multiple differences in the distribution and metabolism of Δ9-THC between adolescent and adult male mice, which might influence the pharmacological response to the drug. SIGNIFICANCE STATEMENT: Animal studies suggest that adolescent exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, causes persistent changes in brain function. These studies generally overlook the impact that age-dependent changes in the distribution and metabolism of the drug might exert on its pharmacological effects. This report provides a comparative analysis of the pharmacokinetic properties of Δ9-THC in adolescent and adult male mice and outlines multiple functionally significant dissimilarities in the distribution and metabolism of Δ9-THC between these two age groups.


Subject(s)
Dronabinol/pharmacokinetics , ATP-Binding Cassette Transporters/genetics , Aging/metabolism , Animals , Claudin-5/genetics , Dronabinol/blood , Gene Expression Regulation , Male , Mice , RNA, Messenger/genetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...